
Hypothesis testing 
 
Another important use of sampling distributions is to test hypotheses 
about population parameters, e.g. mean, proportion, regression 
coefficients, etc. For example, it is possible to stipulate that the 
population mean is equal to some specified value and then use sample 
information to decide whether the hypothetical value can be rejected or 
not in the light of sample evidence. The decision will depend on (1) the 
size of the difference between the hypothetical population mean and the 
sample mean, (2) the size of the sampling error associated with the 
sample mean, and (3) the degree of certainty the decision-maker requires 
before rejecting the initial hypothesis. 
 
 
 Null and alternative hypotheses 
 
First we set up what is known as the null hypothesis, H0, about the 
population parameter, e.g. we may claim that the population mean µ is 
equal to some value µ0, say. This is usually written as H0:µ=µ0.  We then 
stipulate an alternative hypothesis, H1, which may state, e.g., that the 
population mean is not equal to µ0, H1:µ≠µ0. The purpose of hypothesis 
testing is to see if we have sufficient evidence to reject the null 
hypothesis. 
 
Typically, the null hypothesis says that there is nothing unusual or 
important about the data we are considering; for example, if we were 
looking at the average test scores of children who have received a 
particular teaching method, the null hypothesis would be that the mean is 
equal to the national average. If we are testing a new drug, and are 
looking at the proportion of people taking the drug whose condition 
improves, we would take as our null the proportion who improve with a 
placebo, or with a previous drug. If we are looking for a relationship 
between two variables, the null hypothesis is usually that there is no 
relationship, that is that the regression coefficient between them is 0. 
 
The alternative hypothesis is thus that there is something interesting or 
different about the population – for example that the average test score 
from the new teaching method is not equal to the national average, or that 
the proportion who improve with the new drug is not equal to the 
previous rate, or that there is a relationship between the two variables, so 
that the regression coefficient is not equal to 0. 
 



We treat H0 as our “default position”, and we usually require quite strong 
evidence to reject the null hypothesis – typically 90%, 95% or 99%, 
depending on the context. 
 
Test statistic 
 
Having set up our null and alternative hypotheses, we look for a suitable 
test statistic that will give us evidence for or against the two hypotheses. 
For example, if we are looking for evidence about the population mean 
(H0:µ=µ0 vs. H1:µ≠µ0), we will most likely use a statistic based on the 
sample mean, X . From our work in section 4, a suitable statistic 
(assuming we now the standard deviation σ of the population) is  
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of X  as an estimator for µ, which is equal to σ/√n. For large samples, 
n≥30, we know that the distribution of X  is normal, so that Z will be a 
standard normal variable, that is Z→N(0,1).  
 
The larger is ( X -µ0), the bigger is Z, and the less credible it is that H0 is 
correct. So essentially what we are trying to do is to measure whether the 
sample mean, X , is significantly different from µ0. 
 
Decision rule 
 
We now have to decide how large Z must be for us to reject H0. This is 
related to the risk we are prepared to take of an incorrect decision. In 
deciding whether to accept or reject a null hypothesis, there are two types 
of error we may make: 
 
A Type 1 error is to reject the null hypothesis when it is correct. 
 
A Type 2 error is to accept the null hypothesis when it is incorrect. 
 
We usually specify our decision rule in terms of the probability of a type 
1 error we are prepared to accept, denoted α. Depending on α, we can 
calculate critical values of the test statistic Z, so that if Z lies beyond the 
critical values, we reject H0, while if Z lies within the critical values, we 
accept H0. 
 
Thus, in the case of the population mean, if our acceptable level of Type 
1 error is α=0.05, then the critical values of the test statistic will be 



Z=±1.96, since we know from section 4 that, if H0 is true and µ=µ0, then 
P(-1.96<Z<1.96)=0.95. Hence we know that, if µ=µ0, there would be a 
less than 5% probability of obtaining a value of  greater than 1.96 or less 
than -1.96, so that the probability of a type 1 error in rejecting H0 is less 
than 5%. If we obtain a value of Z between the critical values, we 
conclude that we do not have sufficient evidence to reject H0, so we 
accept it. 
 
The acceptable probability of Type 1 error is also called the significance 
level of the test. If, say, α=5%, and we reject H0, we will say that we 
reject H0 at the 5% level of significance, or that X  is significantly 
different from µ0 at the 5% level of significance, etc. 
 
Thus, we set up our decision rule to give H0 the “benefit of the doubt”. 
We require 95% confidence to reject it. Note again that if we reject the 
null hypothesis, we are not saying “there is a 95% probability that µ≠µ0”. 
µ is a constant which either is equal to µ0 or it isn’t. What we are saying is 
that, if µ were equal to µ0, there would be a 95% chance of obtaining a 
test statistic between the critical values. Only 5% of the time would we 
obtain a value for Z that would lead us to reject H0. Hence 
 
P(Reject H0|H0 true)≤0.05. 
 
Note that if we were prepared to accept a Type 1 error probability of 
10%, we would set our critical values at Z=±1.645, while if we were only 
prepared to accept a 1% Type 1 error, we would set critical values of 
Z=±2.58. 
 
Power of a test 
 
The power of a hypothesis test is the probability β of a Type 2 error. 
Given two tests of a hypothesis H0, we say that one test is more powerful 
than the other if, given a specified level of Type 1 error, it has a lower 
probability of Type 2 error. 
 
Example 
 
Suppose we know that average household income in the population is 
£300 p.w., with standard deviation £50 per week. We are trying to see 
whether households in a particular town have a higher or lower average 
income. We take a random sample of 100 households in the town, and 
find an average income of £285 p.w. We wish to test the hypothesis that 



average household income in the town is equal to the national average, 
with a 5% level of significance. 
 
Here H0 is µ=£300, and H1 is µ≠£300. 
 

Our test statistic is Z=
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, with µ0=300, σ=50, and n=100. From the 

sample, X =285. Hence, Z=(285-300)/(50/√100) = -15/5 = -3. 
 
Given a 5% significance level, the critical values of the Z statistic are 
±1.96. Our decision rule is to accept H0 if -1.96<Z<1.96, and reject H0 
otherwise. Hence, we reject H0, and conclude that µ≠£300. In fact, we 
may conclude that the average household income in this town is 
significantly less than the national average, at the 5% (or indeed at the 
1%) level of significance. 
 
Two-tailed and one-tailed tests 
 
The example above involved a two-tailed test of significance – that is, we 
were trying to see if X  was significantly higher or significantly lower 
than µ0. That is, H1 was specified as µ≠µ0. In a one-tailed test, the 
alternative hypothesis is H1:µ>µ0, or Hµ<µ0. This would be appropriate if 
we had some a priori reason to believe that we were likely to find a 
difference in a particular direction. For example, if we were trying to see 
if graduates have the same income as the rest of the population, we might 
use a 1-tailed test, as we would naturally assume that graduates tend to 
enjoy a higher income, so H1 would be that µ>µ0, where µ is graduate 
average income, and µ0 is the average for the whole population. 
 
When we use a 1-tailed test, the critical value of Z is different. For 
example, at the 5% level of significance, we would use a critical value for 
Z of 1.645, instead of ±1.96, since P(Z>1.645|H0)=5%. (Hence ±1.645 as 
the 10% critical value for a 2-tailed test, since P(Z<-1.645|H0) is also 5%, 
so we have 5% in each ‘tail’.) If our alternative hypothesis were µ<µ0, 
then our critical value would be Z=-1.645, rejecting H0 if Z falls below 
this. 



 
 
 
 
 
Proportions 
 
The procedure and rationale for testing hypotheses about population 
proportions are similar to those used for means. They are based on the 
normal distribution and apply to large samples, n≥30. The null 
hypothesis is specified in terms of the population proportion P, and the 
sample proportion, p, and the standard error, SE(p)=(√P(1-P))/n are used 
in the test statistic. For example, suppose we wish to test the null 
hypothesis that the proportion of households in a certain town with at 
least one wage-earner is 0.85. We have a random sample of 100 
households, and the proportion of the sample with at least one wage-
earner is p=0.81. We have 
 
H0: P=P0=0.85 H1:P≠0.85. 
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Note that we use the standard error calculated from the population 
proportion based on the null hypothesis – this is because we are trying to 
say “If the null hypothesis were true, how likely would it be to get this 
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much difference between the sample proportion and population 
proportion?”. So we consider the probability distribution of the test 
statistic that would apply if the null hypothesis were true. 
 
As 1.120<1.96, the r% level of significance 2-tailed critical value of the Z 
statistic, we cannot reject H0, in other words the sample proportion is not 
significantly different from 0.85 (at the 5% level). We therefore accept 
H0. 
 
Difference between two sample means 
 
So far we have made inferences on a single sample. Now we shall make 
inferences from two samples. Typically we shall have two random 
samples from two populations and we shall be making inferences about 
the differences between the means of the two populations using the 
difference between the two sample means. For example, we may be 
interested in testing whether boys are achieving significantly different 
results in school than girls. To be able to answer such a question, we first 
need to study the sampling distribution of the difference between two 
sample means. 
 
If a random sample of size n1 is taken from one population with mean µ1 
and variance σ1

2, and another random sample of size n2 is taken from 
another population with mean µ2 and variance σ2

2, the difference between 
the two sample means is defined as 
 
d=( )21 XX −  
 
where 1X  and 2X  are independent random variables because they will 
not vary from one set of two samples to another, and because changes in 

1X  are not influenced by changes in 2X  and vice-versa. 
 
E(d) = E( 1X - 2X ) = E( 1X )-E( 2X ) = µ1-µ2 = D. 
 
i.e. the sample difference (d) is an unbiased estimator of the population 
difference D. 
 
Var(d) = Var( )21 XX −  = Var( 1X ) + Var( 2X ) = (σ1

2/n1) + (σ+22/n2) 
 
Since 1X  and 2X  are independent. 
 



The standard error of d is given by SE(d)=
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the larger are the two variances and the smaller the sample sizes, the 
larger will be the sampling error of d. 
 
If X1 and X2 are normally distributed, then 1X  and 2X  are also normally 
distributed. Also, if both samples are large (n1,n2≥30), then even if X 
and X2 are not normally distributed, the Central Limit Theorem ensures 
that 1X  and 2X  will be approximately normally distributed. If either of 
these is true, then d will also be normally distributed, as the difference 
between two normal variables. Thus,  
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The confidence interval for the difference between the population means 
can now be easily calculated. The 95% confidence interval is 
 

(µ1-µ2) = ( )21 XX − ±1.96
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The calculated confidence interval will contain the true population 
difference in 95% of samples. 
 
Hence, the hypothesis test for the population difference can also be 
performed in the usual manner. Let H0: µ1-µ2=0, and H1:µ1-µ2≠0. The test 
statistic is 
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and the decision rule, for a 5% significance level, will be to reject H0 if 
|Z|≥1.96, otherwise accept H0. 
 
Example 
 
A school wants to find out if there is a difference in test performance 
between boys and girls. A sample of test scores of 60 boys and 50 girls is 



examined. It is found that the boys have sample mean 1X =54 with 
standard deviation 14, and the girls have sample mean 2X =60, with 
standard deviation 9. NB: we shall ignore for now the problem of 
estimating the population standard deviations, and assume these figures 
are correct. 
 
We set up H0: 1X - 2X =0 H1: 1X - 2X ≠0. 
 
Our test statistic is 
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As usual, for a 5% level of significance on a two-tailed test, our critical 
value for Z is ±1.96, so we do not have sufficient evidence to reject the 
null hypothesis. Girls are doing better, but not significantly better. 
 
Difference between two sample proportions 
 
This can be tested in a similar manner. 
 
Exercise 
 
Two different teaching methods are tried with different groups of students 
on the same course. In the first group, 47 out of 63 students pass. In the 
second group, 66 out of 78 pass. The department wants to work out 
whether one teaching method is significantly better than the other. 
Formulate suitable null and alternative hypotheses, and calculate a 
suitable test statistic, to test this. 
 


